2018-08-06 重点归纳
AMC10数学竞赛是美国高中数学竞赛中的一项,是针对高中一年级及初中三年级学生的数学测试,该竞赛开始于2000年,分A赛和B赛,于每年的2月初和2月中举行,学生可任选参加一项即可。不管是对高校申请还是今后在数学领域的发展都极其有利!那么接下来跟随小编来看一下AMC10数学竞赛真题以及官方解答吧:
The ratio of the length to the width of a rectangle is  :
 :  . If the rectangle has diagonal of length
. If the rectangle has diagonal of length  , then the area may be expressed as
, then the area may be expressed as  for some constant
 for some constant  . What is
. What is  ?
?

Let the rectangle have length  and width
 and width  . Then by
. Then by  triangles (or the Pythagorean Theorem), we have
 triangles (or the Pythagorean Theorem), we have  , and so
, and so  . Hence, the area of the rectangle is
. Hence, the area of the rectangle is  , so the answer is
, so the answer is 
Points  and
 and  are distinct points on the graph of
 are distinct points on the graph of  . What is
. What is  ?
?

Since points on the graph make the equation true, substitute  in to the equation and then solve to find
 in to the equation and then solve to find  and
 and  .
.







There are only two solutions to the equation, so one of them is the value of  and the other is
 and the other is  . The order does not matter because of the absolute value sign.
. The order does not matter because of the absolute value sign.

The answer is 
This solution is very related to Solution #1 but just simplifies the problem earlier to make it easier.
 can be written as
 can be written as  . Recognizing that this is a binomial square, simplify this to
. Recognizing that this is a binomial square, simplify this to  . This gives us two equations:
. This gives us two equations:
 and
 and  .
.
One of these  's is
's is  and one is
 and one is  . Substituting
. Substituting  for
 for  , we get
, we get  and
 and  .
.
So,  .
.
The answer is 
以上就是小编对AMC10数学竞赛真题以及解析的介绍,希望对你有所帮助,更多学习资料请持续关注AMC数学竞赛网!
 
                                            上一篇: 考题13-14 2015 AMC 10A
下一篇: AMC考试都适合什么年龄段的学生参加?