2018-08-29 重点归纳
AMC10数学竞赛是美国高中数学竞赛中的一项,是针对高中一年级及初中三年级学生的数学测试,该竞赛开始于2000年,分A赛和B赛,于每年的2月初和2月中举行,学生可任选参加一项即可。不管是对高校申请还是今后在数学领域的发展都极其有利!那么接下来跟随小编来看一下AMC10数学竞赛真题以及官方解答吧:
Real numbers  ,
,  , and
, and  satisfy the inequalities
 satisfy the inequalities  ,
,  , and
, and  . Which of the following numbers is necessarily positive?
. Which of the following numbers is necessarily positive?

Notice that  must be positive because
 must be positive because  . Therefore the answer is
. Therefore the answer is  .
.
The other choices:
 As
 As  grows closer to
 grows closer to  ,
,  decreases and thus becomes less than
 decreases and thus becomes less than  .
.
 
  can be as small as possible (
 can be as small as possible ( ), so
), so  grows close to
 grows close to  as
 as  approaches
 approaches  .
.
 For all
 For all  ,
,  , and thus it is always negative.
, and thus it is always negative.
 The same logic as above, but when
 The same logic as above, but when  this time.
 this time.
Supposed that  and
 and  are nonzero real numbers such that
 are nonzero real numbers such that  . What is the value of
. What is the value of  ?
?

Rearranging, we find  , or
, or  . Substituting, we can convert the second equation into
. Substituting, we can convert the second equation into  .
.
Substituting each  and
 and  with
 with  , we see that the given equation holds true, as
, we see that the given equation holds true, as  . Thus,
. Thus, 
以上就是小编对AMC10数学竞赛真题以及解析的介绍,希望对你有所帮助,更多学习资料请持续关注AMC数学竞赛网!
 
                                            下一篇: AMC考试都适合什么年龄段的学生参加?