2018-08-30 重点归纳
AMC10数学竞赛是美国高中数学竞赛中的一项,是针对高中一年级及初中三年级学生的数学测试,该竞赛开始于2000年,分A赛和B赛,于每年的2月初和2月中举行,学生可任选参加一项即可。不管是对高校申请还是今后在数学领域的发展都极其有利!那么接下来跟随小编来看一下AMC10数学竞赛真题以及官方解答吧:
In  ,
,  ,
,  ,
,  , and
, and  is the midpoint of
 is the midpoint of  . What is the sum of the radii of the circles inscribed in
. What is the sum of the radii of the circles inscribed in  and
and  ?
?

We note that by the converse of the Pythagorean Theorem,  is a right triangle with a right angle at
 is a right triangle with a right angle at  . Therefore,
. Therefore,  , and
, and ![$[ADB] = [ADC] = 12$](/public/uploads/ueditor/20180830/1535601235433189.png) . Since
. Since  , the inradius of
, the inradius of  is
 is  , and the inradius of
, and the inradius of  is
 is  . Adding the two together, we have
. Adding the two together, we have  .
.
The diameter  of a circle of radius
 of a circle of radius  is extended to a point
 is extended to a point  outside the circle so that
 outside the circle so that  . Point
. Point  is chosen so that
 is chosen so that  and line
and line  is perpendicular to line
 is perpendicular to line  . Segment
. Segment  intersects the circle at a point
 intersects the circle at a point  between
 between  and
 and  . What is the area of
. What is the area of  ?
?


Notice that  and
 and  are right triangles. Then
 are right triangles. Then  .
.  , so
, so  . We also find that
. We also find that  , and thus the area of
, and thus the area of  is
 is  .
.
We note that  by
 by  similarity. Also, since the area of
 similarity. Also, since the area of  and
 and  ,
,  , so the area of
, so the area of  .
.
As stated before, note that  . By similarity, we note that
. By similarity, we note that  is equivalent to
 is equivalent to  . We set
. We set  to
 to  and
 and  to
 to  . By the Pythagorean Theorem,
. By the Pythagorean Theorem,  . Combining,
. Combining,  . We can add and divide to get
. We can add and divide to get  . We square root and rearrange to get
. We square root and rearrange to get  . We know that the legs of the triangle are
. We know that the legs of the triangle are  and
 and  . Mulitplying
. Mulitplying  by
 by  and
 and  eventually gives us
 eventually gives us  
  . We divide this by 2, since
. We divide this by 2, since  is the formula for a triangle. This gives us
 is the formula for a triangle. This gives us  .
.
Let's call the center of the circle that segment  is the diameter of,
 is the diameter of,  . Note that
. Note that  is an isosceles right triangle. Solving for side
 is an isosceles right triangle. Solving for side  , using the Pythagorean theorem, we find it to be
, using the Pythagorean theorem, we find it to be  . Calling the point where segment
. Calling the point where segment  intersects circle
 intersects circle  , the point
, the point  , segment
, segment  would be
 would be  . Also, noting that
. Also, noting that  is a right triangle, we solve for side
 is a right triangle, we solve for side  , using the Pythagorean Theorem, and get
, using the Pythagorean Theorem, and get  . Using Power of Point on point
. Using Power of Point on point  , we can solve for
, we can solve for  . We can subtract
. We can subtract  from
 from  to find
 to find  and then solve for
 and then solve for  using Pythagorean theorem once more.
using Pythagorean theorem once more.
 = (Diameter of circle
 = (Diameter of circle  +
 +  )
) 
  
  =
 =  
  
  =
 = 
 
  
  =
 =  -
 -  
  
  =
 = 
Now to solve for  :
:
 -
 -  =
 =  
  
  +
 +  =
 =  
  
  =
 = 
Note that  is a right triangle because the hypotenuse is the diameter of the circle. Solving for area using the bases
 is a right triangle because the hypotenuse is the diameter of the circle. Solving for area using the bases  and
 and  , we get the area of triangle
, we get the area of triangle  to be
 to be  .
.
以上就是小编对AMC10数学竞赛真题以及解析的介绍,希望对你有所帮助,更多学习资料请持续关注AMC数学竞赛网!
 
                                            下一篇: AMC考试都适合什么年龄段的学生参加?