2018-10-22 重点归纳
AMC10数学竞赛是美国高中数学竞赛中的一项,是针对高中一年级及初中三年级学生的数学测试,该竞赛开始于2000年,分A赛和B赛,于每年的2月初和2月中举行,学生可任选参加一项即可。不管是对高校申请还是今后在数学领域的发展都极其有利!那么接下来跟随小编来看一下AMC10数学竞赛真题以及官方解答吧:
What is the value of  ?
?

Factoring out  from the numerator and cancelling out
 from the numerator and cancelling out  from the numerator and the denominator, we have
 from the numerator and the denominator, we have
![\[\frac{11!-10!}{9!} = \frac{11 \cdot 10! - 1 \cdot 10!}{9!} =  \frac{(10!) \cdot (11 - 1)}{9!} = 10 \cdot 10 =\boxed{\textbf{(B)}\;100}.\]](/public/uploads/ueditor/20181022/1540187013663296.png)
We can use subtraction of fractions to get

Factoring out  gives
 gives  .
.
For what value of  does
 does  ?
?

We can rewrite  as
 as  :
:
![\[\begin{split} 10^x\cdot100^{2x} & =10^x\cdot(10^2)^{2x} \\ 10^x\cdot10^{4x} & =(10^3)^5 \\ 10^{5x} & =10^{15} \end{split}\]](/public/uploads/ueditor/20181022/1540187036175210.png)
Since the bases are equal, we can set the exponents equal, giving us  . Solving the equation gives us
. Solving the equation gives us 
We can rewrite this expression as  , which can be simplified to
 , which can be simplified to  , and that can be further simplified to
, and that can be further simplified to  . This leads to
 . This leads to  . Solving this linear equation yields
. Solving this linear equation yields 
以上就是小编对AMC10数学竞赛真题以及解析的介绍,希望对你有所帮助,更多学习资料请持续关注AMC数学竞赛网!
 
                                            下一篇: AMC考试都适合什么年龄段的学生参加?