2018-09-10 重点归纳
AMC12是针对高中学生的数学测验,该竞赛开始于2000年,分A赛和B赛,于每年的2月初和2月中举行,学生可任选参加一项即可。其主要目的在于激发学生对数学的兴趣,参予AMC12的学生应该不难发现测验的问题都很具挑战性,但测验的题型都不会超过学生的学习范围。这项测验希望每个考生能从竞赛中享受数学。那么接下来跟随小编来看一下AMC12的官方真题以及官方解答吧:
In  shown in the figure,
 shown in the figure,  ,
,  ,
,  , and
, and  is an altitude. Points
 is an altitude. Points  and
 and  lie on sides
 lie on sides  and
 and  , respectively, so that
, respectively, so that  and
 and  are angle bisectors, intersecting
 are angle bisectors, intersecting  at
 at  and
 and  , respectively. What is
, respectively. What is  ?
?


Get the area of the triangle by heron's formula: Use the area to find the height AH with known base BC:
Use the area to find the height AH with known base BC:
![\[AH = 3\sqrt{5}\]](http://latex.artofproblemsolving.com/f/5/4/f54ff1cb156818a28a44bc2448d45ca305e284ff.png)
![\[BH = \sqrt{AB^2 - AH^2} = \sqrt{7^2 - (3\sqrt{5})^2} = 2\]](http://latex.artofproblemsolving.com/8/6/5/8651c0ac9c0d33fdde298515c81ce3e3d98122f8.png)
 Apply angle bisector theorem on triangle
Apply angle bisector theorem on triangle  and triangle
 and triangle  , we get
, we get  and
 and  , respectively. To find AP, PH, AQ, and QH, apply variables, such that
, respectively. To find AP, PH, AQ, and QH, apply variables, such that  is
 is  and
 and  is
 is  . Solving them out, you will get
. Solving them out, you will get  ,
,  ,
,  , and
, and  . Then, since
. Then, since  according to the Segment Addition Postulate, and thus manipulating, you get
 according to the Segment Addition Postulate, and thus manipulating, you get  =
 =
Let the intersection of  and
 and  be the point
 be the point  . Then let the foot of the altitude from
. Then let the foot of the altitude from  to
 to  be
 be  . Note that
. Note that  is an inradius and that
 is an inradius and that ![$II' \cdot s = [ABC]$](http://latex.artofproblemsolving.com/d/7/7/d7700f8af8ff8714c719220763ad73844a8dc232.png) , where
, where  is the semiperimeter of the triangle.
 is the semiperimeter of the triangle.
Using Heron's Formula, we see that  , so
, so  .
.
Then since  and
 and  are parallel,
 are parallel,  and
 and  .
.
Thus,  and
 and  , so
, so  .
.
By the Dual Principle,  and
 and  . With the same method as Solution 1,
. With the same method as Solution 1,  and
 and  . Then
. Then 
![\[\boxed{\textbf{(D)}\frac{8}{15}\sqrt{5}}\]](http://latex.artofproblemsolving.com/3/1/2/312801052f1cdddaec059047af665f2d5818dc63.png)
 lies on altitude
 lies on altitude  , which we find to have a length of
, which we find to have a length of  by Heron's Formula and dividing twice the area by
 by Heron's Formula and dividing twice the area by  . From H we can construct a segment
. From H we can construct a segment  with
 with  on
 on  such that
 such that  is parallel to
 is parallel to  . A similar construction gives
. A similar construction gives  on
 on  such that
 such that  is parallel to
 is parallel to  . We can hence generate a system of ratios that will allow us to find
. We can hence generate a system of ratios that will allow us to find  . Note that such a system will generate a rational number for the ratio
. Note that such a system will generate a rational number for the ratio  . Thus, we choose the only answer that has a
. Thus, we choose the only answer that has a  term in it, giving us
 term in it, giving us  .
.
以上就是小编对AMC真题及答案的介绍,希望对你有所帮助,更多学习资料请持续关注AMC数学竞赛网!
 
                                            上一篇: AMC数学竞赛考点|函数的本质
下一篇: AMC考试都适合什么年龄段的学生参加?