2018-12-03 重点归纳
AMC10数学竞赛是美国高中数学竞赛中的一项,是针对高中一年级及初中三年级学生的数学测试,该竞赛开始于2000年,分A赛和B赛,于每年的2月初和2月中举行,学生可任选参加一项即可。不管是对高校申请还是今后在数学领域的发展都极其有利!那么接下来跟随小编来看一下AMC10数学竞赛真题以及官方解答吧:
Rectangle  has
 has  and
 and  . Point
. Point  lies on
 lies on  so that
 so that  , point
, point  lies on
 lies on  so that
 so that  , and point
, and point  lies on
 lies on  so that
 so that  . Segments
. Segments  and
 and  intersect
 intersect  at
 at  and
 and  , respectively. What is the value of
, respectively. What is the value of  ?
?
![[asy]pair A1=(2,0),A2=(4,4); pair B1=(0,4),B2=(5,1); pair C1=(5,0),C2=(0,4);  draw(A1--A2); draw(B1--B2); draw(C1--C2); draw((0,0)--B1--(5,4)--C1--cycle); dot((20/7,12/7)); dot((3.07692307692,2.15384615384)); label("$Q$",(3.07692307692,2.15384615384),N); label("$P$",(20/7,12/7),W); label("$A$",(0,4), NW); label("$B$",(5,4), NE); label("$C$",(5,0),SE); label("$D$",(0,0),SW); label("$F$",(2,0),S); label("$G$",(5,1),E); label("$E$",(4,4),N);[/asy]](https://latex.artofproblemsolving.com/5/7/a/57a2c18476876164c4e52112dd2a0aca51aea7f8.png)

Since the opposite sides of a rectangle are parallel and  
  
  due to vertical angles,
 due to vertical angles,  
  
  . Furthermore, the ratio between the side lengths of the two triangles is
. Furthermore, the ratio between the side lengths of the two triangles is  
  
  . Labeling
. Labeling  
  
  and
 and  
  
  , we see that
, we see that  turns out to be equal to
 turns out to be equal to  . Since the denominator of
. Since the denominator of  must now be a multiple of 7, the only possible solution in the answer choices is
 must now be a multiple of 7, the only possible solution in the answer choices is  .
.
First, we will define point  as the origin.  Then, we will find the equations of the following three lines:
 as the origin.  Then, we will find the equations of the following three lines:  ,
,  , and
, and  .  The slopes of these lines are
.  The slopes of these lines are  ,
,  , and
, and  , respectively.  Next, we will find the equations of
, respectively.  Next, we will find the equations of  ,
,  , and
, and  .  They are as follows:
.  They are as follows:![\[AG = f(x) = -\frac{3}{5}x + 4\]](https://latex.artofproblemsolving.com/4/8/a/48a94eddf84805e63d1d17af56236727d8f4a426.png)
![\[AC = g(x) = -\frac{4}{5}x + 4\]](https://latex.artofproblemsolving.com/4/6/5/4658f3425def6217f711061c8255b81287158145.png)
![\[EF = h(x) = 2x - 4\]](https://latex.artofproblemsolving.com/e/a/3/ea3ffae2fb0e3136e0caf616123e0b8ec0ae6a2d.png) After drawing in altitudes to
After drawing in altitudes to  from
 from  ,
,  , and
, and  , we see that
, we see that  because of similar triangles, and so we only need to find the x-coordinates of
 because of similar triangles, and so we only need to find the x-coordinates of  and
 and  .
.
![[asy] pair A1=(2,0),A2=(4,4); pair B1=(0,4),B2=(5,1); pair C1=(5,0),C2=(0,4);  pair D1=(20/7,0),D2=(20/7,12/7); pair E1=(40/13,0),E2=(40/13,28/13); pair F1=(4,0),F2=(4,4); draw(A1--A2); draw(B1--B2); draw(C1--C2); draw(D1--D2,dashed); draw(E1--E2,dashed); draw(F1--F2,dashed); draw((0,0)--B1--(5,4)--C1--cycle); dot((20/7,12/7)); dot((3.07692307692,2.15384615384)); dot((20/7,0)); dot((40/13,0)); dot((4,0)); label("$Q$",(3.07692307692,2.15384615384),N); label("$P$",(20/7,12/7),W); label("$A$",(0,4), NW); label("$B$",(5,4), NE); label("$C$",(5,0),SE); label("$D$",(0,0),SW); label("$F$",(2,0),S); label("$G$",(5,1),E); label("$E$",(4,4),N); label("$P'$", (20/7,0),SSW); label("$Q'$", (40/13,0),SSE); label("$E'$", (4,0),S);  dot(A1); dot(A2); dot(B1); dot(B2); dot(C1); dot(C2); dot((0,0)); dot((5,4));[/asy]](https://latex.artofproblemsolving.com/f/3/8/f38ddd9b2b43cc8a60e79519667e83c875c1592f.png)
Finding the intersections of  and
 and  , and
, and  and
 and  gives the x-coordinates of
 gives the x-coordinates of  and
 and  to be
 to be  and
 and  .  This means that
.  This means that  .  Now we can find
.  Now we can find 
![[asy]  pair A1=(2,0),A2=(4,4); pair B1=(0,4),B2=(5,1); pair C1=(5,0),C2=(0,4);  pair H = (20/3,0); draw(A1--A2); draw(B1--B2); draw(C1--C2); draw(B1--H); draw((0,0)--H); draw((0,0)--B1--(5,4)--C1--cycle); dot((20/7,12/7)); dot((3.07692307692,2.15384615384)); label("$Q$",(3.07692307692,2.15384615384),N); label("$P$",(20/7,12/7),W); label("$A$",(0,4), NW); label("$B$",(5,4), NE); label("$C$",(5,0),SE); label("$D$",(0,0),SW); label("$F$",(2,0),S); label("$G$",(5,1),E); label("$E$",(4,4),N); label("$H$",H,E);   [/asy]](https://latex.artofproblemsolving.com/3/b/4/3b455ac7d872c3d7252d88bd682214690b9760cc.png)
Extend  to intersect
 to intersect  at
 at  . Letting
. Letting  , we have that
, we have that ![\[\triangle{HCG}\sim\triangle{HDA}\implies \dfrac{\overline{HC}}{\overline{CG}}=\dfrac{\overline{HD}}{\overline{AD}}\implies \dfrac{x}{1}=\dfrac{x+5}{4}\implies x=\dfrac{5}{3}.\]](https://latex.artofproblemsolving.com/9/5/d/95db1b42ba871c52c5caf9b15f21f31aad43c087.png) 
 
Then, notice that  and
 and  . Thus, we see that
. Thus, we see that ![\[\dfrac{AE}{HF}=\dfrac{EQ}{QF}\implies \dfrac{AE}{HF} = \dfrac{4}{3+\frac{5}{3}} = \dfrac{12}{14}=\dfrac{6}{7}\implies \dfrac{EQ}{EF}=\dfrac{6}{13}\]](https://latex.artofproblemsolving.com/f/2/9/f2900f11466d2c50b9ed2af848feb38816a2f3f1.png) and
 and ![\[\dfrac{AE}{CF}=\dfrac{EP}{FP} \implies \dfrac{4}{3}=\dfrac{EP}{FP}\implies \dfrac{FP}{FE} = \dfrac{3}{7}.\]](https://latex.artofproblemsolving.com/a/b/b/abba99e586d3dd97dccd108ebadca8ceeecafb09.png) Thus, we see that
 Thus, we see that ![\[\dfrac{PQ}{EF} = 1-\left(\dfrac{6}{13}+\dfrac{3}{7}\right) = 1-\left(\dfrac{42+39}{91}\right) = 1-\left(\dfrac{81}{91}\right) = \boxed{\textbf{(D)}~ \dfrac{10}{91}}.\]](https://latex.artofproblemsolving.com/8/f/0/8f0bfcc421e8b71e42f9c3c65e02649fedbb21aa.png)
以上就是小编对AMC10数学竞赛真题以及解析的介绍,希望对你有所帮助,如果想了解更多关于AMC数学竞赛报考点、南京AMC数学竞赛培训、美国数学竞赛AMC有用吗以及AMC学习资料等信息请持续关注AMC数学竞赛网。
 
                                            上一篇: AMC数学竞赛真题2016年B 20
下一篇: AMC考试都适合什么年龄段的学生参加?